Magnetic-Polaron-Induced Enhancement of Surface Raman Scattering
نویسندگان
چکیده
منابع مشابه
Magnetic-Polaron-Induced Enhancement of Surface Raman Scattering
The studies of the effects of magnetic field on surface enhanced Raman scattering (SERS) have been so far limited to the case of ferromagnetic/noble-metal, core/shell nano-particles, where the influence was always found to be negative. In this work, we investigate the influence of magnetic field on a diluted magnetic semiconductor/metal SERS system. Guided by three dimensional finite-difference...
متن کاملSurface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study
This paper presents an in-depth study of Surface Enhanced Raman Scattering (SERS) enhancement factors (EFs) and cross-sections, including several issues often overlooked. In particular, various possible rigorous definitions of the SERS EFs are introduced and discussed in the context of SERS applications, such as analytical chemistry and single molecule SERS. These definitions highlight the impo...
متن کاملPlasma-induced formation of Ag nanodots for ultra-high-enhancement surface-enhanced Raman scattering substrates.
We report here plasma-induced formation of Ag nanostructures for surface-enhanced Raman scattering (SERS) applications. An array of uniform Ag patterned structures of 150 nm diameter was first fabricated on a silicon substrate with imprint lithography; then the substrate was further treated with an oxygen plasma to fracture the patterned structures into clusters of smaller, interconnected, clos...
متن کاملSurface-enhanced Raman scattering
We present an introduction to surface-enhanced Raman scattering (SERS) which reviews the basic experimental facts and the essential features of the mechanisms which have been proposed to account for the observations. We then review very recent fundamental developments which include: SERS from single particles and single molecules; SERS from fractal clusters and surfaces; and new insights into t...
متن کاملSurface-enhanced Raman scattering
© 2007 American Institute of Physics, S-0031-9228-0711-020-6 When light interacts with matter, it can scatter inelastically from vibrational quantum states. During that process, photons may lose energy to, or gain it from, vibrational excitations. A change in the photon energy must produce a concomitant shift in the frequency of the scattered light (see box 1). The phenomenon, called the Raman ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2016
ISSN: 2045-2322
DOI: 10.1038/srep19025